LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 10 of total 11

Search options

  1. Article ; Online: Packet-Based Intrusion Detection Using Bayesian Topic Models in Mobile Edge Computing

    Xuefei Cao / Yulong Fu / Bo Chen

    Security and Communication Networks, Vol

    2020  Volume 2020

    Abstract: In this paper, a network intrusion detection system is proposed using Bayesian topic model latent Dirichlet allocation (LDA) for mobile edge computing (MEC). The method employs tcpdump packets and extracts multiple features from the packet headers. The ... ...

    Abstract In this paper, a network intrusion detection system is proposed using Bayesian topic model latent Dirichlet allocation (LDA) for mobile edge computing (MEC). The method employs tcpdump packets and extracts multiple features from the packet headers. The tcpdump packets are transferred into documents based on the features. A topic model is trained using only attack-free traffic in order to learn the behavior patterns of normal traffic. Then, the test traffic is analyzed against the learned behavior patterns to measure the extent to which the test traffic resembles the normal traffic. A threshold is defined in the training phase as the minimum likelihood of a host. In the test phase, when a host’s test traffic has a likelihood lower than the host’s threshold, the traffic is labeled as an intrusion. The intrusion detection system is validated using DARPA 1999 dataset. Experiment shows that our method is suitable to protect the security of MEC.
    Keywords Technology (General) ; T1-995 ; Science (General) ; Q1-390
    Subject code 380
    Language English
    Publishing date 2020-01-01T00:00:00Z
    Publisher Hindawi-Wiley
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: A new acridine-based photosensitizer with ultra-low light requirement efficiently inactivates carbapenem-resistant Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus and degrades their antibiotic resistance genes

    Xiaojie Xu / Min Yang / Yunhan Jiang / Ningyao Tao / Yulong Fu / Jiahui Fan / Xin Xu / Huixiang Shi / Zhan Lu / Chaofeng Shen

    Environment International, Vol 173, Iss , Pp 107839- (2023)

    2023  

    Abstract: The spread of antibiotic resistant pathogens and antibiotic resistance genes (ARGs) in the environment poses a serious threat to public health. However, existing methods are difficult to effectively remove antibiotic resistant pathogens and ARGs from the ...

    Abstract The spread of antibiotic resistant pathogens and antibiotic resistance genes (ARGs) in the environment poses a serious threat to public health. However, existing methods are difficult to effectively remove antibiotic resistant pathogens and ARGs from the environment. In this study, we synthesized a new acridine-based photosensitizer, 2,7-dibromo-9-mesityl-10-methylacridinium perchlorate (YM-3), by the heavy atom effect, which could photodynamically inactivate antibiotic resistant pathogens and reduce ARGs by generating singlet oxygen (1O2) in an aqueous environment. The 1O2 yield of YM-3 was 4.9 times that of its modified precursor. YM-3 could reduce the culturable number and even the viable counts of methicillin-resistant Staphylococcus aureus and carbapenem-resistant Acinetobacter baumannii to 0 (inactivation rate > 99.99999%) after 2 and 8 h of low-intensity blue light (15 W/m2) irradiation, respectively. After 20 h of light exposure, the copy numbers of ARGs in both bacteria were reduced by 5.80 and 4.48 log, respectively, which might indicate that ARGs had been degraded. In addition, YM-3 still had an efficient bactericidal effect after five inactivation cycle. These characteristics of ultra-low light intensity requirement and efficient bactericidal ability make YM-3 have good application prospects for disinfection in indoor and sunlight environment.
    Keywords Acridine-based photosensitizer ; Antibiotic resistant pathogens ; Singlet oxygen ; Photodynamic inactivation ; Antibiotic resistance genes ; Environmental sciences ; GE1-350
    Subject code 580
    Language English
    Publishing date 2023-03-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: A SNARE protective pool antagonizes APOL1 renal toxicity in Drosophila nephrocytes

    Jin-Gu Lee / Yulong Fu / Jun-yi Zhu / Pei Wen / Joyce van de Leemput / Patricio E. Ray / Zhe Han

    Cell & Bioscience, Vol 13, Iss 1, Pp 1-

    2023  Volume 14

    Abstract: Abstract Background People of Sub-Saharan African ancestry are at higher risk of developing chronic kidney disease (CKD), attributed to the Apolipoprotein L1 (APOL1) gene risk alleles (RA) G1 and G2. The underlying mechanisms by which the APOL1-RA ... ...

    Abstract Abstract Background People of Sub-Saharan African ancestry are at higher risk of developing chronic kidney disease (CKD), attributed to the Apolipoprotein L1 (APOL1) gene risk alleles (RA) G1 and G2. The underlying mechanisms by which the APOL1-RA precipitate CKD remain elusive, hindering the development of potential treatments. Results Using a Drosophila genetic modifier screen, we found that SNARE proteins (Syx7, Ykt6, and Syb) play an important role in preventing APOL1 cytotoxicity. Reducing the expression of these SNARE proteins significantly increased APOL1 cytotoxicity in fly nephrocytes, the equivalent of mammalian podocytes, whereas overexpression of Syx7, Ykt6, or Syb attenuated their toxicity in nephrocytes. These SNARE proteins bound to APOL1-G0 with higher affinity than APOL1-G1/G2, and attenuated APOL1-G0 cytotoxicity to a greater extent than either APOL1-RA. Conclusions Using a Drosophila screen, we identified SNARE proteins (Syx7, Ykt6, and Syb) as antagonists of APOL1-induced cytotoxicity by directly binding APOL1. These data uncovered a new potential protective role for certain SNARE proteins in the pathogenesis of APOL1-CKD and provide novel therapeutic targets for APOL1-associated nephropathies.
    Keywords SNARE proteins ; SNARE protective pool ; APOL1 ; Renal toxicity ; Nephrocytes ; Serum resistance-associated (SRA) protein ; Biotechnology ; TP248.13-248.65 ; Biology (General) ; QH301-705.5 ; Biochemistry ; QD415-436
    Language English
    Publishing date 2023-11-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Production of singlet oxygen from photosensitizer erythrosine for facile inactivation of coronavirus on mask

    Yunhan Jiang / Yulong Fu / Xiaojie Xu / Xiaoguang Guo / Feiyu Wang / Xin Xu / Yao-Wei Huang / Jiyan Shi / Chaofeng Shen

    Environment International, Vol 177, Iss , Pp 107994- (2023)

    2023  

    Abstract: The global health crisis caused by the COVID-19 pandemic has led to a surge in demand and use of personal protective equipment (PPE) such as masks, putting great pressure on social production and the environment. It is urgent to find an efficient and non- ...

    Abstract The global health crisis caused by the COVID-19 pandemic has led to a surge in demand and use of personal protective equipment (PPE) such as masks, putting great pressure on social production and the environment. It is urgent to find an efficient and non-destructive disinfection method for the safe reuse of PPE. This study proposes a PPE disinfection method that uses erythrosine, a U.S. Food and Drug Administration-approved food dye, as photosensitizer to produce singlet oxygen for virus inactivation, and indicates the completion of disinfection by its photobleaching color change. After spraying 100 μL of 10 μM erythrosine on the surface of the mask for 3 times and light exposure for 25 min, the titer of coronavirus decreased by more than 99.999%, and the color of erythrosine on the mask surface disappeared. In addition, the structure of the mask was intact and the filtration efficiency was maintained at > 95% after 10 cycles of erythrosine treatment. Therefore, this disinfection method can provide at least 10 cycles of reuse with the advantages of high safety and convenient, and the completion of disinfection can be indicated by its photobleaching, which is suitable for hospitals and daily life to reduce the consumption of PPE.
    Keywords COVID-19 ; Disinfection ; Erythrosine ; Masks ; Singlet oxygen ; Transmissible gastroenteritis virus ; Environmental sciences ; GE1-350
    Subject code 660
    Language English
    Publishing date 2023-07-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: APOL1-G2 accelerates nephrocyte cell death by inhibiting the autophagy pathway

    Jun-yi Zhu / Jin-Gu Lee / Yulong Fu / Joyce van de Leemput / Patricio E. Ray / Zhe Han

    Disease Models & Mechanisms, Vol 16, Iss

    2023  Volume 12

    Keywords apol1 ; podocyte ; nephrocyte ; drosophila ; endocytosis ; autophagy ; Medicine ; R ; Pathology ; RB1-214
    Language English
    Publishing date 2023-12-01T00:00:00Z
    Publisher The Company of Biologists
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Zika virus non-structural protein NS4A restricts eye growth in Drosophila through regulation of JAK/STAT signaling

    Sneh Harsh / Yulong Fu / Eric Kenney / Zhe Han / Ioannis Eleftherianos

    Disease Models & Mechanisms, Vol 13, Iss

    2020  Volume 4

    Abstract: To gain a comprehensive view of the changes in host gene expression underlying Zika virus (ZIKV) pathogenesis, we performed whole-genome RNA sequencing (RNA-seq) of ZIKV-infected Drosophila adult flies. RNA-seq analysis revealed that ZIKV infection ... ...

    Abstract To gain a comprehensive view of the changes in host gene expression underlying Zika virus (ZIKV) pathogenesis, we performed whole-genome RNA sequencing (RNA-seq) of ZIKV-infected Drosophila adult flies. RNA-seq analysis revealed that ZIKV infection alters several and diverse biological processes, including stress, locomotion, lipid metabolism, imaginal disc morphogenesis and regulation of JAK/STAT signaling. To explore the interaction between ZIKV infection and JAK/STAT signaling regulation, we generated genetic constructs overexpressing ZIKV-specific non-structural proteins NS2A, NS2B, NS4A and NS4B. We found that ectopic expression of non-structural proteins in the developing Drosophila eye significantly restricts growth of the larval and adult eye and correlates with considerable repression of the in vivo JAK/STAT reporter, 10XStat92E-GFP. At the cellular level, eye growth defects are associated with reduced rate of proliferation without affecting the overall rate of apoptosis. In addition, ZIKV NS4A genetically interacts with the JAK/STAT signaling components; co-expression of NS4A along with the dominant-negative form of domeless or StatRNAi results in aggravated reduction in eye size, while co-expression of NS4A in HopTuml (also known as hopTum) mutant background partially rescues the hop-induced eye overgrowth phenotype. The function of ZIKV NS4A in regulating growth is maintained in the wing, where ZIKV NS4A overexpression in the pouch domain results in reduced growth linked with diminished expression of Notch targets, Wingless (Wg) and Cut, and the Notch reporter, NRE-GFP. Thus, our study provides evidence that ZIKV infection in Drosophila results in restricted growth of the developing eye and wing, wherein eye phenotype is induced through regulation of JAK/STAT signaling, whereas restricted wing growth is induced through regulation of Notch signaling. The interaction of ZIKV non-structural proteins with the conserved host signaling pathways further advance our understanding of ZIKV-induced ...
    Keywords drosophila ; eye development ; jak/stat signaling ; host-pathogen interaction ; zika virus ; Medicine ; R ; Pathology ; RB1-214
    Subject code 570
    Language English
    Publishing date 2020-04-01T00:00:00Z
    Publisher The Company of Biologists
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  7. Article ; Online: Pharmacological or genetic inhibition of hypoxia signaling attenuates oncogenic RAS-induced cancer phenotypes

    Jun-yi Zhu / Xiaohu Huang / Yulong Fu / Yin Wang / Pan Zheng / Yang Liu / Zhe Han

    Disease Models & Mechanisms, Vol 15, Iss

    2022  Volume 2

    Abstract: Oncogenic Ras mutations are highly prevalent in hematopoietic malignancies. However, it is difficult to directly target oncogenic RAS proteins for therapeutic intervention. We have developed a Drosophila acute myeloid leukemia model induced by human ... ...

    Abstract Oncogenic Ras mutations are highly prevalent in hematopoietic malignancies. However, it is difficult to directly target oncogenic RAS proteins for therapeutic intervention. We have developed a Drosophila acute myeloid leukemia model induced by human KRASG12V, which exhibits a dramatic increase in myeloid-like leukemia cells. We performed both genetic and drug screens using this model. The genetic screen identified 24 candidate genes able to attenuate the oncogenic RAS-induced phenotype, including two key hypoxia pathway genes HIF1A and ARNT (HIF1B). The drug screen revealed that echinomycin, an inhibitor of HIF1A, can effectively attenuate the leukemia phenotype caused by KRASG12V. Furthermore, we showed that echinomycin treatment can effectively suppress oncogenic RAS-driven leukemia cell proliferation, using both human leukemia cell lines and a mouse xenograft model. These data suggest that inhibiting the hypoxia pathway could be an effective treatment approach and that echinomycin is a promising targeted drug to attenuate oncogenic RAS-induced cancer phenotypes. This article has an associated First Person interview with the first author of the paper.
    Keywords drosophila ; mouse xenografts ; leukemia ; oncogenic ras ; echinomycin ; hypoxia pathway ; hif1a ; Medicine ; R ; Pathology ; RB1-214
    Subject code 610
    Language English
    Publishing date 2022-02-01T00:00:00Z
    Publisher The Company of Biologists
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  8. Article ; Online: Thyroid hormone-regulated chromatin landscape and transcriptional sensitivity of the pituitary gland

    Young-Wook Cho / Yulong Fu / Chen-Che Jeff Huang / Xuefeng Wu / Lily Ng / Kevin A. Kelley / Kristen R. Vella / Anders H. Berg / Anthony N. Hollenberg / Hong Liu / Douglas Forrest

    Communications Biology, Vol 6, Iss 1, Pp 1-

    2023  Volume 14

    Abstract: Abstract Thyroid hormone (3,5,3’-triiodothyronine, T3) is a key regulator of pituitary gland function. The response to T3 is thought to hinge crucially on interactions of nuclear T3 receptors with enhancers but these sites in pituitary chromatin remain ... ...

    Abstract Abstract Thyroid hormone (3,5,3’-triiodothyronine, T3) is a key regulator of pituitary gland function. The response to T3 is thought to hinge crucially on interactions of nuclear T3 receptors with enhancers but these sites in pituitary chromatin remain surprisingly obscure. Here, we investigate genome-wide receptor binding in mice using tagged endogenous thyroid hormone receptor β (TRβ) and analyze T3-regulated open chromatin using an anterior pituitary-specific Cre driver (Thrb b2Cre). Strikingly, T3 regulates histone modifications and chromatin opening primarily at sites that maintain TRβ binding regardless of T3 levels rather than at sites where T3 abolishes or induces de novo binding. These sites associate more frequently with T3-activated than T3-suppressed genes. TRβ-deficiency blunts T3-regulated gene expression, indicating that TRβ confers transcriptional sensitivity. We propose a model of gene activation in which poised receptor-enhancer complexes facilitate adjustable responses to T3 fluctuations, suggesting a genomic basis for T3-dependent pituitary function or pituitary dysfunction in thyroid disorders.
    Keywords Biology (General) ; QH301-705.5
    Subject code 570
    Language English
    Publishing date 2023-12-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  9. Article ; Online: High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila

    Jun-yi Zhu / Yulong Fu / Margaret Nettleton / Adam Richman / Zhe Han

    eLife, Vol

    2017  Volume 6

    Abstract: Genomic sequencing has implicated large numbers of genes and de novo mutations as potential disease risk factors. A high throughput in vivo model system is needed to validate gene associations with pathology. We developed a Drosophila-based functional ... ...

    Abstract Genomic sequencing has implicated large numbers of genes and de novo mutations as potential disease risk factors. A high throughput in vivo model system is needed to validate gene associations with pathology. We developed a Drosophila-based functional system to screen candidate disease genes identified from Congenital Heart Disease (CHD) patients. 134 genes were tested in the Drosophila heart using RNAi-based gene silencing. Quantitative analyses of multiple cardiac phenotypes demonstrated essential structural, functional, and developmental roles for more than 70 genes, including a subgroup encoding histone H3K4 modifying proteins. We also demonstrated the use of Drosophila to evaluate cardiac phenotypes resulting from specific, patient-derived alleles of candidate disease genes. We describe the first high throughput in vivo validation system to screen candidate disease genes identified from patients. This approach has the potential to facilitate development of precision medicine approaches for CHD and other diseases associated with genetic factors.
    Keywords congenital heart disease ; heart development ; in vivo validation ; histone modification ; Drosophila ; Medicine ; R ; Science ; Q ; Biology (General) ; QH301-705.5
    Language English
    Publishing date 2017-01-01T00:00:00Z
    Publisher eLife Sciences Publications Ltd
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  10. Article: Wnt4 is required for ostia development in the Drosophila heart

    Chen, Zhimin / Jun-yi Zhu / Yulong Fu / Adam Richman / Zhe Han

    Developmental biology. 2016 May 15, v. 413

    2016  

    Abstract: The Drosophila ostia are valve-like structures in the heart with functional similarity to vertebrate cardiac valves. The Wnt/β-catenin signaling pathway is critical for valve development in zebrafish and mouse, but the key ligand(s) for valve induction ... ...

    Abstract The Drosophila ostia are valve-like structures in the heart with functional similarity to vertebrate cardiac valves. The Wnt/β-catenin signaling pathway is critical for valve development in zebrafish and mouse, but the key ligand(s) for valve induction remains unclear. We observed high levels of Wnt4 gene expression in Drosophila ostia progenitor cells, immediately prior to morphological differentiation of these cells associated with ostia formation. This differentiation was blocked in Wnt4 mutants and in flies expressing canonical Wnt signaling pathway inhibitors but not inhibitors of the planar cell polarity pathway. High levels of Wnt4 dependent activation of a canonical Wnt signaling reporter was observed specifically in ostia progenitor cells. In vertebrate valve formation Wnt signaling is active in cells undergoing early endothelial-mesenchymal transition (EMT) and the Wnt9 homolog of Drosophila Wnt4 is expressed in valve progenitors. In demonstrating an essential role for Wnt4 in ostia development we have identified similarities between molecular and cellular events associated with early EMT during vertebrate valve development and the differentiation and partial delamination of ostia progenitor cells in the process of ostia formation.
    Keywords Danio rerio ; Drosophila ; cell polarity ; delamination ; gene expression ; heart ; mice ; mutants ; signal transduction ; stem cells
    Language English
    Dates of publication 2016-0515
    Size p. 188-198.
    Publishing place Elsevier Inc.
    Document type Article
    ZDB-ID 1114-9
    ISSN 1095-564X ; 0012-1606
    ISSN (online) 1095-564X
    ISSN 0012-1606
    DOI 10.1016/j.ydbio.2016.03.008
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

To top