LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 7 of total 7

Search options

  1. Article ; Online: Duplication, Loss, and Evolutionary Features of Specific UDP-Glucuronosyltransferase Genes in Carnivora (Mammalia, Laurasiatheria)

    Mitsuki Kondo / Yoshinori Ikenaka / Shouta M. M. Nakayama / Yusuke K. Kawai / Mayumi Ishizuka

    Animals, Vol 12, Iss 2954, p

    2022  Volume 2954

    Abstract: UDP-glucuronosyltransferases (UGTs) are one of the most important enzymes for xenobiotic metabolism or detoxification. Through duplication and loss of genes, mammals evolved the species-specific variety of UGT isoforms. Among mammals, Carnivora is one of ...

    Abstract UDP-glucuronosyltransferases (UGTs) are one of the most important enzymes for xenobiotic metabolism or detoxification. Through duplication and loss of genes, mammals evolved the species-specific variety of UGT isoforms. Among mammals, Carnivora is one of the orders that includes various carnivorous species, yet there is huge variation of food habitat. Recently, lower activity of UGT1A and 2B were shown in Felidae and pinnipeds, suggesting evolutional loss of these isoforms. However, comprehensive analysis for genetic or evolutional features are still missing. This study was conducted to reveal evolutional history of UGTs in Carnivoran species. We found specific gene expansion of UGT1As in Canidae, brown bear and black bear. We also found similar genetic duplication in UGT2Bs in Canidae, and some Mustelidae and Ursidae. In addition, we discovered contraction or complete loss of UGT1A7–12 in phocids, some otariids, felids, and some Mustelids. These studies indicate that even closely related species have completely different evolution of UGTs and further imply the difficulty of extrapolation of the pharmacokinetics and toxicokinetic result of experimental animals into wildlife carnivorans.
    Keywords wildlife ; xenobiotic metabolism ; in silico analysis ; genome database ; phase II metabolism ; glucuronidation ; Veterinary medicine ; SF600-1100 ; Zoology ; QL1-991
    Subject code 590
    Language English
    Publishing date 2022-10-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Morphological and Histological Features of the Vomeronasal Organ in African Pygmy Hedgehog ( Atelerix albiventris )

    Daisuke Kondoh / Yusuke Tanaka / Yusuke K. Kawai / Takayuki Mineshige / Kenichi Watanabe / Yoshiyasu Kobayashi

    Animals, Vol 11, Iss 1462, p

    2021  Volume 1462

    Abstract: The vomeronasal organ (VNO) detects specific chemicals such as pheromones and kairomones. Hedgehogs (Eulipotyphla: Erinaceidae) have a well-developed accessory olfactory bulb that receives projections from the VNO, but little is known about the hedgehog ... ...

    Abstract The vomeronasal organ (VNO) detects specific chemicals such as pheromones and kairomones. Hedgehogs (Eulipotyphla: Erinaceidae) have a well-developed accessory olfactory bulb that receives projections from the VNO, but little is known about the hedgehog VNO. Here, we studied the histological features of the VNO in five individual African pygmy hedgehogs by hematoxylin-eosin, periodic acid-Schiff, and Alcian blue stains. The hedgehog VNO comprises a hyaline cartilage capsule, soft tissue and epithelial lumen, and it branches from the site just before the incisive duct opening into the nasal cavity. The soft tissues contain several small mucous (or mucoserous) glands and a large serous gland, and many venous sinuses all around the lumen. The VNO lumen is round to oval throughout the hedgehog VNO, and the sensory epithelium lines almost the entire rostral part and medial wall of the middle part. These findings indicate that the VNO is functional and plays an important role in the hedgehog. Notably, the VNO apparently has a characteristic flushing mechanism with serous secretions like those of gustatory glands, which the hedgehog might frequently use to recognize the external environment.
    Keywords chemosensory system ; exocrine glands ; hedgehogs ; kairomones ; olfaction ; pheromones ; Veterinary medicine ; SF600-1100 ; Zoology ; QL1-991
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: The evolution of UDP-glycosyl/glucuronosyltransferase 1E (UGT1E) genes in bird lineages is linked to feeding habits but UGT2 genes is not.

    Yusuke K Kawai / Yoshinori Ikenaka / Mayumi Ishizuka / Akira Kubota

    PLoS ONE, Vol 13, Iss 10, p e

    2018  Volume 0205266

    Abstract: UDP-glycosyltransferase (UGT) catalyzes the transfer of glycosyl groups (e.g., glucuronic acid) to exogenous or endogenous chemicals and plays an important role in conjugation reactions. In vertebrates, UGT genes are divided into 5 families: UGT1, UGT2, ... ...

    Abstract UDP-glycosyltransferase (UGT) catalyzes the transfer of glycosyl groups (e.g., glucuronic acid) to exogenous or endogenous chemicals and plays an important role in conjugation reactions. In vertebrates, UGT genes are divided into 5 families: UGT1, UGT2, UGT3, UGT5, and UGT8. Among these UGT enzymes, UGT1 and UGT2 enzymes are known to be important xenobiotic metabolizing enzymes in mammals. However, little is known about UGT1 and UGT2 genes in avian species. In this study, we therefore aimed to classify avian UGT1 and UGT2 genes based on their evolutionary relationships. We also investigated the association between UGT molecular evolution and ecological factors, specifically feeding habits, habitat, and migration. By examining the genomes of 43 avian species with differing ecology, we showed that avian UGT1E genes are divided into 6 groups and UGT2 genes into 3 groups. Correlations between UGT gene count and ecological factors suggested that the number of UGT1E genes is decreasing in carnivorous species. Estimates of selection pressure also support the hypothesis that diet influenced avian UGT1E gene evolution, similar to mammalian UGT1A and UGT2B genes.
    Keywords Medicine ; R ; Science ; Q
    Subject code 590
    Language English
    Publishing date 2018-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Toxicokinetic analysis of the anticoagulant rodenticides warfarin & diphacinone in Egyptian fruit bats (Rousettus aegyptiacus) as a comparative sensitivity assessment for Bonin fruit bats (Pteropus pselaphon)

    Kazuki Takeda / Kosuke Manago / Ayuko Morita / Yusuke K. Kawai / Nobuaki Yasuo / Masakazu Sekijima / Yoshinori Ikenaka / Takuma Hashimoto / Ryuichi Minato / Yusuke Oyamada / Kazuo Horikoshi / Hajime Suzuki / Mayumi Ishizuka / Shouta M.M. Nakayama

    Ecotoxicology and Environmental Safety, Vol 243, Iss , Pp 113971- (2022)

    2022  

    Abstract: Anticoagulant rodenticides have been widely used to eliminate wild rodents, which as invasive species on remote islands can disturb ecosystems. Since rodenticides can cause wildlife poisoning, it is necessary to evaluate the sensitivity of local mammals ... ...

    Abstract Anticoagulant rodenticides have been widely used to eliminate wild rodents, which as invasive species on remote islands can disturb ecosystems. Since rodenticides can cause wildlife poisoning, it is necessary to evaluate the sensitivity of local mammals and birds to the poisons to ensure the rodenticides are used effectively. The Bonin Islands are an archipelago located 1000 km southeast of the Japanese mainland and are famous for the unique ecosystems. Here the first-generation anticoagulant rodenticide diphacinone has been used against introduced black rats (Rattus rattus). The only land mammal native to the archipelago is the Bonin fruit bat (Pteropus pselaphon), but little is known regarding its sensitivity to rodenticides. In this study, the Egyptian fruit bats (Rousettus aegyptiacus) was used as a model animal for in vivo pharmacokinetics and pharmacodynamics analysis and in vitro enzyme kinetics using their hepatic microsomal fractions. The structure of vitamin K epoxide reductase (VKORC1), the target protein of the rodenticide in the Bonin fruit bat, was predicted from its genome and its binding affinity to rodenticides was evaluated. The Egyptian fruit bats excreted diphacinone slowly and showed similar sensitivity to rats. In contrast, they excreted warfarin, another first-generation rodenticide, faster than rats and recovered from the toxic effect faster. An in silico binding study also indicated that the VKORC1 of fruit bats is relatively tolerant to warfarin, but binds strongly to diphacinone. These results suggest that even chemicals with the same mode of action display different sensitivities in different species: fruit bat species are relatively resistant to warfarin, but vulnerable to diphacinone.
    Keywords Chemical sensitivity ; Cytochrome P450 ; Molecular docking ; Pharmacokinetics ; Vitamin K epoxide reductase ; Environmental pollution ; TD172-193.5 ; Environmental sciences ; GE1-350
    Subject code 590
    Language English
    Publishing date 2022-09-01T00:00:00Z
    Publisher Elsevier
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Morphological features of the nasal cavities of hawksbill, olive ridley, and black sea turtles

    Chiyo Kitayama / Keiichi Ueda / Mariko Omata / Taketeru Tomita / Shingo Fukada / Shogo Murakami / Yoshiaki Tanaka / Akihiro Kaji / Satomi Kondo / Hiroyuki Suganuma / Yuki Aiko / Atsuru Fujimoto / Yusuke K Kawai / Masashi Yanagawa / Daisuke Kondoh

    PLoS ONE, Vol 16, Iss 4, p e

    Comparative studies with green, loggerhead and leatherback sea turtles.

    2021  Volume 0250873

    Abstract: We analyzed the internal structure of the nasal cavities of hawksbill, olive ridley and black sea turtles from computed tomography images. The nasal cavities of all three species consisted of a vestibule, nasopharyngeal duct and cavum nasi proprium that ... ...

    Abstract We analyzed the internal structure of the nasal cavities of hawksbill, olive ridley and black sea turtles from computed tomography images. The nasal cavities of all three species consisted of a vestibule, nasopharyngeal duct and cavum nasi proprium that included anterodorsal, posterodorsal and anteroventral diverticula, and a small posteroventral salience formed by a fossa of the wall. These findings were similar to those of green and loggerhead sea turtles (Cheloniidae), but differed from those of leatherback sea turtles (Dermochelyidae). Compared to the Cheloniidae species, the nasal cavity in leatherback sea turtles was relatively shorter, wider and larger in volume. Those structural features of the nasal cavity of leatherback sea turtles might help to suppress heat dissipation and reduce water pressure within the nasal cavity in cold and deep waters.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2021-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article: The African hedgehog (Atelerix albiventris): Low phase I and phase II metabolism activities

    Saengtienchai, Aksorn / Hazuki Mizukawa / Mayumi Ishizuka / Nesta Bortey-Sam / Shouta M.M. Nakayama / Usuma Jermnark / Yoshinori Ikenaka / Yusuke K. Kawai

    Comparative biochemistry and physiology. 2016 Dec., v. 190

    2016  

    Abstract: The African hedgehog, Atelerix albiventris, is a spiny mammal that has become popular as an exotic pet in many countries. To elucidate the ability of hedgehogs to metabolize xenobiotics, the animals were exposed to polycyclic aromatic hydrocarbon, pyrene. ...

    Abstract The African hedgehog, Atelerix albiventris, is a spiny mammal that has become popular as an exotic pet in many countries. To elucidate the ability of hedgehogs to metabolize xenobiotics, the animals were exposed to polycyclic aromatic hydrocarbon, pyrene. The in vivo exposure study indicated that pyrene was biotransformed to glucuronide and sulfate conjugates, such as pyrene-1-glucuronide, pyrene-1-sulfate, and pyrenediol-sulfate, and excreted in the urine. Pyrene-1-glucuronide was the main metabolite, and limited sulfate conjugate excretion was observed. The main products excreted in feces were 1-hydroxypyrene and pyrene. Based on the results of the in vivo exposure study, in vitro enzymatic kinetic experiments were performed using various substrates and compared to rats and pigs. The enzyme efficiencies of cytochrome P450 (CYP)-mediated ethoxyresorufin O-deethylase activity and warfarin 4′-, 6-, and 8-hydroxylation activity in hedgehogs were lower than those of rats. Furthermore, UDP-glucuronosyltransferase activity in hedgehogs also had a lower Km value than that in pigs. Interestingly, the enzyme efficiencies of sulfation activity toward 1-hydroxypyrene and β-estradiol in hedgehogs were significantly lower than those in pigs. These observations suggested that phenol and estrogen sulfotransferases may have limited roles in xenobiotic metabolism in hedgehogs.
    Keywords Atelerix albiventris ; cytochrome P-450 ; excretion ; feces ; metabolism ; metabolites ; pets ; phenol ; polycyclic aromatic hydrocarbons ; rats ; sulfates ; sulfotransferases ; swine ; urine ; warfarin ; xenobiotics
    Language English
    Dates of publication 2016-12
    Size p. 38-47.
    Publishing place Elsevier Inc.
    Document type Article
    ZDB-ID 189285-x
    ISSN 0306-4492 ; 0742-8413 ; 1532-0456
    ISSN 0306-4492 ; 0742-8413 ; 1532-0456
    DOI 10.1016/j.cbpc.2016.08.005
    Database NAL-Catalogue (AGRICOLA)

    More links

    Kategorien

  7. Article ; Online: Avian cytochrome P450 (CYP) 1-3 family genes

    Kensuke P Watanabe / Yusuke K Kawai / Yoshinori Ikenaka / Minami Kawata / Shin-Ichi Ikushiro / Toshiyuki Sakaki / Mayumi Ishizuka

    PLoS ONE, Vol 8, Iss 9, p e

    isoforms, evolutionary relationships, and mRNA expression in chicken liver.

    2013  Volume 75689

    Abstract: Cytochrome P450 (CYP) of chicken and other avian species have been studied primarily with microsomes or characterized by cloning and protein expression. However, the overall existing isoforms in avian CYP1-3 families or dominant isoforms in avian ... ...

    Abstract Cytochrome P450 (CYP) of chicken and other avian species have been studied primarily with microsomes or characterized by cloning and protein expression. However, the overall existing isoforms in avian CYP1-3 families or dominant isoforms in avian xenobiotic metabolism have not yet been elucidated. In this study, we aimed to clarify and classify all of the existing isoforms of CYP1-3 in avian species using available genome assemblies for chicken, zebra finch, and turkey. Furthermore, we performed qRT-PCR assay to identify dominant CYP genes in chicken liver. Our results suggested that avian xenobiotic-metabolizing CYP genes have undergone unique evolution such as CYP2C and CYP3A genes, which have undergone avian-specific gene duplications. qRT-PCR experiments showed that CYP2C45 was the most highly expressed isoform in chicken liver, while CYP2C23b was the most highly induced gene by phenobarbital. Considering together with the result of further enzymatic characterization, CYP2C45 may have a dominant role in chicken xenobiotic metabolism due to the constitutive high expression levels, while CYP2C23a and CYP2C23b can be greatly induced by chicken xenobiotic receptor (CXR) activators. These findings will provide not only novel insights into avian xenobiotic metabolism, but also a basis for the further characterization of each CYP gene.
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2013-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top