LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: A COVID-19 model incorporating variants, vaccination, waning immunity, and population behavior

    Zachary LaJoie / Thomas Usherwood / Shailen Sampath / Vikas Srivastava

    Scientific Reports, Vol 12, Iss 1, Pp 1-

    2022  Volume 11

    Abstract: Abstract Vaccines for COVID-19 have allowed countries to combat the spread of the disease. However, new variants have resulted in significant spikes in cases and raised severe health and economic concerns. We present a COVID-19 model to predict coupled ... ...

    Abstract Abstract Vaccines for COVID-19 have allowed countries to combat the spread of the disease. However, new variants have resulted in significant spikes in cases and raised severe health and economic concerns. We present a COVID-19 model to predict coupled effects of vaccine multiple-dose roll-out strategies, vaccine efficacy, waning immunity, population level of caution, sense of safety, under-reporting of cases, and highly prevalent variants such as the Delta (B.1.617.2) and Omicron (B.1.1.529). The modeling framework can incorporate new variants as they emerge to give critical insights into the new cases and guide public policy decision-making concerning vaccine roll-outs and reopening strategies. The model is shown to recreate the history of COVID-19 for five countries (Germany, India, Japan, South Africa, and the United States). Parameters for crucial aspects of the pandemic, such as population behavior, new variants, vaccination, and waning immunity, can be adjusted to predict pandemic scenarios. The model was used to conduct trend analysis to simulate pandemic dynamics taking into account the societal level of caution, societal sense of safety, and the proportions of individuals vaccinated with first, second, and booster doses. We used the results of serological testing studies to estimate the actual number of cases across countries. The model allows quantification of otherwise hard to quantify aspects such as the infectious power of variants and the effectiveness of government mandates and population behavior. Some example cases are presented by investigating the competitive nature of COVID variants and the effect of different vaccine distribution strategies between immunity groups.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2022-11-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: A model and predictions for COVID-19 considering population behavior and vaccination

    Thomas Usherwood / Zachary LaJoie / Vikas Srivastava

    Scientific Reports, Vol 11, Iss 1, Pp 1-

    2021  Volume 11

    Abstract: Abstract The effect of vaccination coupled with the behavioral response of the population is not well understood. Our model incorporates two important dynamically varying population behaviors: level of caution and sense of safety. Level of caution ... ...

    Abstract Abstract The effect of vaccination coupled with the behavioral response of the population is not well understood. Our model incorporates two important dynamically varying population behaviors: level of caution and sense of safety. Level of caution increases with infectious cases, while an increasing sense of safety with increased vaccination lowers precautions. Our model accurately reproduces the complete time history of COVID-19 infections for various regions of the United States. We propose a parameter $$d_I$$ d I as a direct measure of a population’s caution against an infectious disease that can be obtained from the infectious cases. The model provides quantitative measures of highest disease transmission rate, effective transmission rate, and cautionary behavior. We predict future COVID-19 trends in the United States accounting for vaccine rollout and behavior. Although a high rate of vaccination is critical to quickly ending the pandemic, a return towards pre-pandemic social behavior due to increased sense of safety during vaccine deployment can cause an alarming surge in infections. Our results predict that at the current rate of vaccination, the new infection cases for COVID-19 in the United States will approach zero by August 2021. This model can be used for other regions and for future epidemics and pandemics.
    Keywords Medicine ; R ; Science ; Q
    Language English
    Publishing date 2021-06-01T00:00:00Z
    Publisher Nature Portfolio
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top