LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 6 of total 6

Search options

  1. Article ; Online: Long-term differentiating primary human airway epithelial cell cultures

    Zuzanna Bukowy-Bieryłło

    Cell Communication and Signaling, Vol 19, Iss 1, Pp 1-

    how far are we?

    2021  Volume 18

    Abstract: Abstract Background Human airway epithelial (HAE) cellular models are widely used in applicative studies of the airway physiology and disease. In vitro expanded and differentiated primary HAE cells collected from patients seem to be an accurate model of ... ...

    Abstract Abstract Background Human airway epithelial (HAE) cellular models are widely used in applicative studies of the airway physiology and disease. In vitro expanded and differentiated primary HAE cells collected from patients seem to be an accurate model of human airway, offering a quicker and cheaper alternative to the induced pluripotent stem cell (iPSCs) models. However, the biggest drawback of primary HAE models is their limited proliferative lifespan in culture. Much work has been devoted to understand the factors, which govern the HAE cell proliferation and differentiation, both in vivo and in vitro. Here, I have summarized recent achievements in primary HAE culture, with the special emphasis on the models of conditionally reprogrammed cells (CRC), which allow longer in vitro proliferation and differentiation of HAE cells. The review compares the CRC HAE technique variants (feeder culture or HAE mono-culture), based on recently published studies exploiting this model. The advantages and limitations of each CRC HAE model variant are summarized, along with the description of other factors affecting the CRC HAE culture success (tissue type, sampling method, sample quality). Conclusions CRC HAE cultures are a useful technique in respiratory research, which in many cases exceeds the iPSCs and organoid culture methods. Until the current limitations of the iPSCs and organoid culture methods will be alleviated, the primary CRC HAE cultures might be a useful model in respiratory research. Plain English summary Airway epithelium (AE) is a type of tissue, which lines the whole length of human airways, from the nose to the bronchi. Improper functioning of AE causes several human airway disorders, such as asthma, chronic obstructive pulmonary disease (COPD) or cystic fibrosis (CF). Much work has been devoted to finding the best scientific model of human AE, in order to learn about its functioning in health and disease. Among the popular AE models are the primary in vitro cultured AE cells collected from human donors. Unfortunately, such human AE (HAE) cells do not easily divide (expand) in vitro; this poses a large logistic and ethical problem for the researchers. Here, I summarize recent achievements in the methods for in vitro culture of human AE cells, with special emphasis on the conditionally reprogrammed cell (CRC) models, which allow longer and more effective expansion of primary human AE cells in vitro. The review describes how the specific chemicals used in the CRC models work to allow the increased HAE divisions and compares the effects of the different so-far developed variants of the CRC HAE culture. The review also pinpoints the areas which need to be refined, in order to maximize the usefulness of the CRC AE cultures from human donors in research on human airway disorders. Video abstract
    Keywords Primary airway cell culture ; Air–liquid interface culture ; Conditional reprogramming ; ROCK inhibitor ; SMAD inhibitor ; TGF-β1 inhibitor ; Medicine ; R ; Cytology ; QH573-671
    Subject code 610
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Perspectives for Primary Ciliary Dyskinesia

    Zuzanna Bukowy-Bieryllo / Michal Witt / Ewa Zietkiewicz

    International Journal of Molecular Sciences, Vol 23, Iss 4122, p

    2022  Volume 4122

    Abstract: Primary ciliary dyskinesia (PCD) is a ciliopathy caused by genetically determined impairment of motile cilia–organelles present on the surface of many types of cells [.] ...

    Abstract Primary ciliary dyskinesia (PCD) is a ciliopathy caused by genetically determined impairment of motile cilia–organelles present on the surface of many types of cells [.]
    Keywords n/a ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Language English
    Publishing date 2022-04-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  3. Article ; Online: Properties of Non-Aminoglycoside Compounds Used to Stimulate Translational Readthrough of PTC Mutations in Primary Ciliary Dyskinesia

    Maciej Dabrowski / Zuzanna Bukowy-Bieryllo / Claire L. Jackson / Ewa Zietkiewicz

    International Journal of Molecular Sciences, Vol 22, Iss 4923, p

    2021  Volume 4923

    Abstract: Primary ciliary dyskinesia (PCD) is a rare disease with autosomal recessive inheritance, caused mostly by bi-allelic gene mutations that impair motile cilia structure and function. Currently, there are no causal treatments for PCD. In many disease models, ...

    Abstract Primary ciliary dyskinesia (PCD) is a rare disease with autosomal recessive inheritance, caused mostly by bi-allelic gene mutations that impair motile cilia structure and function. Currently, there are no causal treatments for PCD. In many disease models, translational readthrough of premature termination codons (PTC-readthrough) induced by aminoglycosides has been proposed as an effective way of restoring functional protein expression and reducing disease symptoms. However, variable outcomes of pre-clinical trials and toxicity associated with long-term use of aminoglycosides prompt the search for other compounds that might overcome these problems. Because a high proportion of PCD-causing variants are nonsense mutations, readthrough therapies are an attractive option. We tested a group of chemical compounds with known PTC-readthrough potential (ataluren, azithromycin, tylosin, amlexanox, and the experimental compound TC007), collectively referred to as non-aminoglycosides (NAGs). We investigated their PTC-readthrough efficiency in six PTC mutations found in Polish PCD patients, in the context of cell and cilia health, and in comparison to the previously tested aminoglycosides. The NAGs did not compromise the viability of the primary nasal respiratory epithelial cells, and the ciliary beat frequency was retained, similar to what was observed for gentamicin. In HEK293 cells transfected with six PTC-containing inserts, the tested compounds stimulated PTC-readthrough but with lower efficiency than aminoglycosides. The study allowed us to select compounds with minimal negative impact on cell viability and function but still the potential to induce PTC-readthrough.
    Keywords readthrough ; primary ciliary dyskinesia ; premature termination codon ; aminoglycosides ; STOP suppression ; rare disease ; Biology (General) ; QH301-705.5 ; Chemistry ; QD1-999
    Subject code 610
    Language English
    Publishing date 2021-05-01T00:00:00Z
    Publisher MDPI AG
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  4. Article ; Online: Mutations in radial spoke head genes and ultrastructural cilia defects in East-European cohort of primary ciliary dyskinesia patients.

    Ewa Ziętkiewicz / Zuzanna Bukowy-Bieryłło / Katarzyna Voelkel / Barbara Klimek / Hanna Dmeńska / Andrzej Pogorzelski / Anna Sulikowska-Rowińska / Ewa Rutkiewicz / Michał Witt

    PLoS ONE, Vol 7, Iss 3, p e

    2012  Volume 33667

    Abstract: Primary ciliary dyskinesia (PCD) is a rare (1/20,000), multisystem disease with a complex phenotype caused by the impaired motility of cilia/flagella, usually related to ultrastructural defects of these organelles. Mutations in genes encoding radial ... ...

    Abstract Primary ciliary dyskinesia (PCD) is a rare (1/20,000), multisystem disease with a complex phenotype caused by the impaired motility of cilia/flagella, usually related to ultrastructural defects of these organelles. Mutations in genes encoding radial spoke head (RSPH) proteins, elements of the ciliary ultrastructure, have been recently described. However, the relative involvement of RSPH genes in PCD pathogenesis remained unknown, due to a small number of PCD families examined for mutations in these genes. The purpose of this study was to estimate the involvement of RSPH4A and RSPH9 in PCD pathogenesis among East Europeans (West Slavs), and to shed more light on ultrastructural ciliary defects caused by mutations in these genes. The coding sequences of RSPH4A and RSPH9 were screened in PCD patients from 184 families, using single strand conformational polymorphism analysis and sequencing. Two previously described (Q109X; R490X) and two new RSPH4A mutations (W356X; IVS3_2-5del), in/around exons 1 and 3, were identified; no mutations were found in RSPH9. We estimate that mutations in RSPH4A, but not in RSPH9, are responsible for 2-3% of cases in the East European PCD population (4% in PCD families without situs inversus; 11% in families preselected for microtubular defects). Analysis of the SNP-haplotype background provided insight into the ancestry of repetitively found mutations (Q109X; R490X; IVS3_2-5del), but further studies involving other PCD cohorts are required to elucidate whether these mutations are specific for Slavic people or spread among other European populations. Ultrastructural defects associated with the mutations were analyzed in the transmission electron microscope images; almost half of the ciliary cross-sections examined in patients with RSPH4A mutations had the microtubule transposition phenotype (9+0 and 8+1 pattern). While microtubule transposition was a prevalent ultrastructural defect in cilia from patients with RSPH4A mutations, similar defects were also observed in PCD patients with ...
    Keywords Medicine ; R ; Science ; Q
    Subject code 616
    Language English
    Publishing date 2012-01-01T00:00:00Z
    Publisher Public Library of Science (PLoS)
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  5. Article ; Online: Proceedings of the 2nd BEAT-PCD conference and 3rd PCD training school

    Florian Halbeisen / Claire Hogg / Mikkel C. Alanin / Zuzanna Bukowy-Bieryllo / Francisco Dasi / Julie Duncan / Amanda Friend / Myrofora Goutaki / Claire Jackson / Victoria Keenan / Amanda Harris / Robert A. Hirst / Philipp Latzin / Gemma Marsh / Kim Nielsen / Dominic Norris / Daniel Pellicer / Ana Reula / Bruna Rubbo /
    Nisreen Rumman / Amelia Shoemark / Woolf T. Walker / Claudia E. Kuehni / Jane S. Lucas

    BMC Proceedings, Vol 12, Iss S2, Pp 1-

    part 1

    2018  Volume 17

    Abstract: Abstract Primary ciliary dyskinesia (PCD) is a rare heterogenous condition that causes progressive suppurative lung disease, chronic rhinosinusitis, chronic otitis media, infertility and abnormal situs. ‘Better Experimental Approaches to Treat Primary ... ...

    Abstract Abstract Primary ciliary dyskinesia (PCD) is a rare heterogenous condition that causes progressive suppurative lung disease, chronic rhinosinusitis, chronic otitis media, infertility and abnormal situs. ‘Better Experimental Approaches to Treat Primary Ciliary Dyskinesia’ (BEAT-PCD) is a network of scientists and clinicians coordinating research from basic science through to clinical care with the intention of developing treatments and diagnostics that lead to improved long-term outcomes for patients. BEAT-PCD activities are supported by EU funded COST Action (BM1407). The second BEAT-PCD conference, and third PCD training school were held jointly in April 2017 in Valencia, Spain. Presentations and workshops focussed on advancing the knowledge and skills relating to PCD in: basic science, epidemiology, diagnostic testing, clinical management and clinical trials. The multidisciplinary conference provided an interactive platform for exchanging ideas through a program of lectures, poster presentations, breakout sessions and workshops. Three working groups met to plan consensus statements. Progress with BEAT-PCD projects was shared and new collaborations were fostered. In this report, we summarize the meeting, highlighting developments made during the meeting.
    Keywords Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2018-03-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  6. Article ; Online: Proceedings of the 3rd BEAT-PCD Conference and 4th PCD Training School

    Hannah Farley / Bruna Rubbo / Zuzanna Bukowy-Bieryllo / Mahmoud Fassad / Myrofora Goutaki / Katharine Harman / Claire Hogg / Claudia E. Kuehni / Susana Lopes / Kim G. Nielsen / Dominic P. Norris / Ana Reula / Nisreen Rumman / Amelia Shoemark / Hannah Wilkins / Agatha Wisse / Jane S. Lucas / June K. Marthin

    BMC Proceedings, Vol 12, Iss S16, Pp 1-

    2018  Volume 15

    Abstract: Abstract Primary ciliary dyskinesia (PCD) is a chronic suppurative airways disease that is usually recessively inherited and has marked clinical phenotypic heterogeneity. Classic symptoms include neonatal respiratory distress, chronic rhinitis since ... ...

    Abstract Abstract Primary ciliary dyskinesia (PCD) is a chronic suppurative airways disease that is usually recessively inherited and has marked clinical phenotypic heterogeneity. Classic symptoms include neonatal respiratory distress, chronic rhinitis since early childhood, chronic otitis media, recurrent airway infections leading to bronchiectasis, chronic sinusitis, laterality defects with and without congenital heart disease including abnormal situs in approximately 50% of the cases, and male infertility. Lung function deteriorates progressively from childhood throughout life. ‘Better Experimental Approaches to Treat Primary Ciliary Dyskinesia’ (BEAT-PCD) is a network of scientists and clinicians coordinating research from basic science through to clinical care with the intention of developing treatments and diagnostics that lead to improved long-term outcomes for patients. BEAT-PCD activities are supported by EU funded COST Action (BM1407). The third BEAT-PCD conference and fourth PCD training school were held jointly in February 2018 in Lisbon, Portugal. Presentations and workshops focussed on advancing the knowledge and skills relating to PCD in: basic science, epidemiology, diagnostic testing, clinical management and clinical trials. The multidisciplinary conference provided an interactive platform for exchanging ideas through a program of lectures, poster presentations, breakout sessions and workshops. Three working groups met to plan consensus statements. Progress with BEAT-PCD projects was shared and new collaborations were fostered. In this report, we summarize the meeting, highlighting developments made during the meeting.
    Keywords Primary ciliary dyskinesia ; Chronic respiratory disease ; Multidisciplinary ; Medicine ; R ; Science ; Q
    Subject code 610
    Language English
    Publishing date 2018-12-01T00:00:00Z
    Publisher BMC
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top