LIVIVO - The Search Portal for Life Sciences

zur deutschen Oberfläche wechseln
Advanced search

Search results

Result 1 - 2 of total 2

Search options

  1. Article ; Online: Bioactive constituents with antibacterial, resistance modulation, anti-biofilm formation and efflux pump inhibition properties from Aidia genipiflora stem bark

    Daniel Anokwah / Evelyn Asante-Kwatia / Abraham Y. Mensah / Cynthia Amaning Danquah / Benjamin K. Harley / Isaac Kingsley Amponsah / Lukas Oberer

    Clinical Phytoscience, Vol 7, Iss 1, Pp 1-

    2021  Volume 11

    Abstract: Abstract Background Antimicrobial resistance is a global health challenge. The involvement of bacterial biofilms and efflux pumps in the development of multidrug resistance (MDR) is well established. Medicinal plants have been proposed as alternatives ... ...

    Abstract Abstract Background Antimicrobial resistance is a global health challenge. The involvement of bacterial biofilms and efflux pumps in the development of multidrug resistance (MDR) is well established. Medicinal plants have been proposed as alternatives for combating MDR focusing on their bioactive constituents with resistance modulatory activities. This study was aimed at investigating the stem bark of Aidia genipiflora for bioactive constituents with anti-biofilm, efflux pump inhibition and resistance modulatory activities. Method The crude methanol extract was purified by column chromatography and isolated compounds characterized by mass and nuclear magnetic resonance spectrometry. Antibacterial activity was determined by the High-throughput spot culture growth inhibition and the broth micro-dilution assay. The ethidium bromide accumulation assay was used to determine efflux pump inhibition property. Biofilm inhibition was determined in a microplate crystal violet retention assay. Results Purification of the ethyl acetate fraction led to the isolation of oleanonic acid (1), 4-hydroxy cinnamic acid docosyl ester (2), β-stigmasterol/β-sitosterol (mixture 3a/b) and D-mannitol (4). The minimum inhibitory concentrations (MICs) ranged from 250 to > 500 μg/mL for extracts and fractions and from 15 to 250 μg/mL for compounds. In the presence of sub-inhibitory concentrations of the compounds, the MIC of amoxicillin against E. coli (20 μg/mL) and P. aeruginosa (320 μg/mL) was reduced by 32 and 10 folds respectively. The whole extract demonstrated anti-biofilm formation and efflux pump inhibition in E. coli, S. aureus and P. aeruginosa. The sterol mixture (3a/b) at concentration of 100 μg/mL caused the highest inhibition (73%) of biofilm formation in S. aureus. Oleanonic acid (1) demonstrated remarkable efflux pump inhibition at MIC of 7.8 μg/mL in E. coli better than the standard drugs verapamil and chlorpromazine. Conclusion This study confirms the prospects of A. genipiflora as a source of new antibacterial agents ...
    Keywords Aidia genipiflora ; Biofilm ; Modulation ; Efflux pump ; Oleanonic ; Antibacterial ; Medicine ; R ; Homeopathy ; RX1-681
    Subject code 540
    Language English
    Publishing date 2021-03-01T00:00:00Z
    Publisher SpringerOpen
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

  2. Article ; Online: Synthesis and Antimicrobial Resistant Modulatory Activity of 2,4-Dinitrophenylhydrazone Derivatives as Agents against Some ESKAPE Human Pathogens

    Alberta Ade / Cedric D. K. Amengor / Abena Brobbey / Isaac Ayensu / Benjamin K. Harley / Yaw Duah Boakye

    Journal of Chemistry, Vol

    2020  Volume 2020

    Abstract: A library of six novel phenylhydrazones were synthesized and evaluated for their in vitro antimicrobial and resistance modulating activity against a panel of Gram-positive, Gram-negative, and fungal species. The compounds were produced in good yields of ... ...

    Abstract A library of six novel phenylhydrazones were synthesized and evaluated for their in vitro antimicrobial and resistance modulating activity against a panel of Gram-positive, Gram-negative, and fungal species. The compounds were produced in good yields of 60–92% w/w and characterized using melting point, UV-visible spectroscopy, infrared, and nuclear magnetic resonance (1H, 13C, and DEPT-Q) techniques. Mass spectroscopy was used to confirm the identity of one of the most active compounds, 5 [SA5]. The phenylhydrazones showed activity against all the six selected microorganisms with minimum inhibitory concentration (MIC) values of the most active compounds, 1 [BP1] and 5 [SA5], at 138 µM (Klebsiella pneumoniae) and 165 µM (Streptococcus pneumoniae), respectively. Compound 1 [BP1] further demonstrated a high resistance modulatory activity at 1.078 µM against Streptococcus pneumoniae and Klebsiella pneumoniae.
    Keywords Chemistry ; QD1-999
    Subject code 540
    Language English
    Publishing date 2020-01-01T00:00:00Z
    Publisher Hindawi Limited
    Document type Article ; Online
    Database BASE - Bielefeld Academic Search Engine (life sciences selection)

    More links

    Kategorien

To top