LIVIVO - Das Suchportal für Lebenswissenschaften

switch to English language
Erweiterte Suche

Suchergebnis

Treffer 1 - 2 von insgesamt 2

Suchoptionen

  1. Artikel ; Online: The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages

    Kaufman Les / Martindale Mark Q / Dubuc Timothy Q / Hansen Ulla / Traylor-Knowles Nikki / Finnerty John R

    BMC Evolutionary Biology, Vol 10, Iss 1, p

    2010  Band 101

    Abstract: Abstract Background The transcription factors of the LSF/Grainyhead (GRH) family are characterized by the possession of a distinctive DNA-binding domain that bears no clear relationship to other known DNA-binding domains, with the possible exception of ... ...

    Abstract Abstract Background The transcription factors of the LSF/Grainyhead (GRH) family are characterized by the possession of a distinctive DNA-binding domain that bears no clear relationship to other known DNA-binding domains, with the possible exception of the p53 core domain. In triploblastic animals, the LSF and GRH subfamilies have diverged extensively with respect to their biological roles, general expression patterns, and mechanism of DNA binding. For example, Grainyhead (GRH) homologs are expressed primarily in the epidermis, and they appear to play an ancient role in maintaining the epidermal barrier. By contrast, LSF homologs are more widely expressed, and they regulate general cellular functions such as cell cycle progression and survival in addition to cell-lineage specific gene expression. Results To illuminate the early evolution of this family and reconstruct the functional divergence of LSF and GRH, we compared homologs from 18 phylogenetically diverse taxa, including four basal animals ( Nematostella vectensis , Vallicula multiformis , Trichoplax adhaerens , and Amphimedon queenslandica ), a choanoflagellate ( Monosiga brevicollis ) and several fungi. Phylogenetic and bioinformatic analyses of these sequences indicate that (1) the LSF/GRH gene family originated prior to the animal-fungal divergence, and (2) the functional diversification of the LSF and GRH subfamilies occurred prior to the divergence between sponges and eumetazoans. Aspects of the domain architecture of LSF/GRH proteins are well conserved between fungi, choanoflagellates, and metazoans, though within the Metazoa, the LSF and GRH families are clearly distinct. We failed to identify a convincing LSF/GRH homolog in the sequenced genomes of the algae Volvox carteri and Chlamydomonas reinhardtii or the amoebozoan Dictyostelium purpureum . Interestingly, the ancestral GRH locus has become split into two separate loci in the sea anemone Nematostella , with one locus encoding a DNA binding domain and the other locus encoding the dimerization domain. Conclusions In metazoans, LSF and GRH proteins play a number of roles that are essential to achieving and maintaining multicellularity. It is now clear that this protein family already existed in the unicellular ancestor of animals, choanoflagellates, and fungi. However, the diversification of distinct LSF and GRH subfamilies appears to be a metazoan invention. Given the conserved role of GRH in maintaining epithelial integrity in vertebrates, insects, and nematodes, it is noteworthy that the evolutionary origin of Grh appears roughly coincident with the evolutionary origin of the epithelium.
    Schlagwörter Biology (General) ; QH301-705.5 ; Science ; Q ; DOAJ:Biology ; DOAJ:Biology and Life Sciences ; Evolution ; QH359-425
    Thema/Rubrik (Code) 572
    Sprache Englisch
    Erscheinungsdatum 2010-04-01T00:00:00Z
    Verlag BioMed Central
    Dokumenttyp Artikel ; Online
    Datenquelle BASE - Bielefeld Academic Search Engine (Lebenswissenschaftliche Auswahl)

    Zusatzmaterialien

    Kategorien

  2. Artikel ; Online: The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages.

    Traylor-Knowles, Nikki / Hansen, Ulla / Dubuc, Timothy Q / Martindale, Mark Q / Kaufman, Les / Finnerty, John R

    BMC evolutionary biology

    2010  Band 10, Seite(n) 101

    Abstract: Background: The transcription factors of the LSF/Grainyhead (GRH) family are characterized by the possession of a distinctive DNA-binding domain that bears no clear relationship to other known DNA-binding domains, with the possible exception of the p53 ... ...

    Abstract Background: The transcription factors of the LSF/Grainyhead (GRH) family are characterized by the possession of a distinctive DNA-binding domain that bears no clear relationship to other known DNA-binding domains, with the possible exception of the p53 core domain. In triploblastic animals, the LSF and GRH subfamilies have diverged extensively with respect to their biological roles, general expression patterns, and mechanism of DNA binding. For example, Grainyhead (GRH) homologs are expressed primarily in the epidermis, and they appear to play an ancient role in maintaining the epidermal barrier. By contrast, LSF homologs are more widely expressed, and they regulate general cellular functions such as cell cycle progression and survival in addition to cell-lineage specific gene expression.
    Results: To illuminate the early evolution of this family and reconstruct the functional divergence of LSF and GRH, we compared homologs from 18 phylogenetically diverse taxa, including four basal animals (Nematostella vectensis, Vallicula multiformis, Trichoplax adhaerens, and Amphimedon queenslandica), a choanoflagellate (Monosiga brevicollis) and several fungi. Phylogenetic and bioinformatic analyses of these sequences indicate that (1) the LSF/GRH gene family originated prior to the animal-fungal divergence, and (2) the functional diversification of the LSF and GRH subfamilies occurred prior to the divergence between sponges and eumetazoans. Aspects of the domain architecture of LSF/GRH proteins are well conserved between fungi, choanoflagellates, and metazoans, though within the Metazoa, the LSF and GRH families are clearly distinct. We failed to identify a convincing LSF/GRH homolog in the sequenced genomes of the algae Volvox carteri and Chlamydomonas reinhardtii or the amoebozoan Dictyostelium purpureum. Interestingly, the ancestral GRH locus has become split into two separate loci in the sea anemone Nematostella, with one locus encoding a DNA binding domain and the other locus encoding the dimerization domain.
    Conclusions: In metazoans, LSF and GRH proteins play a number of roles that are essential to achieving and maintaining multicellularity. It is now clear that this protein family already existed in the unicellular ancestor of animals, choanoflagellates, and fungi. However, the diversification of distinct LSF and GRH subfamilies appears to be a metazoan invention. Given the conserved role of GRH in maintaining epithelial integrity in vertebrates, insects, and nematodes, it is noteworthy that the evolutionary origin of Grh appears roughly coincident with the evolutionary origin of the epithelium.
    Mesh-Begriff(e) Animals ; DNA-Binding Proteins/genetics ; Evolution, Molecular ; Humans ; Phylogeny ; Transcription Factors/genetics
    Chemische Substanzen DNA-Binding Proteins ; Transcription Factors
    Sprache Englisch
    Erscheinungsdatum 2010-04-18
    Erscheinungsland England
    Dokumenttyp Journal Article ; Research Support, Non-U.S. Gov't ; Research Support, U.S. Gov't, Non-P.H.S.
    ISSN 1471-2148
    ISSN (online) 1471-2148
    DOI 10.1186/1471-2148-10-101
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

Zum Seitenanfang