LIVIVO - Das Suchportal für Lebenswissenschaften

switch to English language
Erweiterte Suche

Suchergebnis

Treffer 1 - 1 von insgesamt 1

Suchoptionen

Artikel ; Online: Flexible metallic core-shell nanostructured electrodes for neural interfacing.

Rodilla, Beatriz L / Arché-Núñez, Ana / Ruiz-Gómez, Sandra / Domínguez-Bajo, Ana / Fernández-González, Claudia / Guillén-Colomer, Clara / González-Mayorga, Ankor / Rodríguez-Díez, Noelia / Camarero, Julio / Miranda, Rodolfo / López-Dolado, Elisa / Ocón, Pilar / Serrano, María C / Pérez, Lucas / González, M Teresa

Scientific reports

2024  Band 14, Heft 1, Seite(n) 3729

Abstract: Electrodes with nanostructured surface have emerged as promising low-impedance neural interfaces that can avoid the charge-injection restrictions typically associated to microelectrodes. In this work, we propose a novel approximation, based on a two-step ...

Abstract Electrodes with nanostructured surface have emerged as promising low-impedance neural interfaces that can avoid the charge-injection restrictions typically associated to microelectrodes. In this work, we propose a novel approximation, based on a two-step template assisted electrodeposition technique, to obtain flexible nanostructured electrodes coated with core-shell Ni-Au vertical nanowires. These nanowires benefit from biocompatibility of the Au shell exposed to the environment and the mechanical properties of Ni that allow for nanowires longer and more homogeneous in length than their only-Au counterparts. The nanostructured electrodes show impedance values, measured by electrochemical impedance spectroscopy (EIS), at least 9 times lower than those of flat reference electrodes. This ratio is in good accordance with the increased effective surface area determined both from SEM images and cyclic voltammetry measurements, evidencing that only Au is exposed to the medium. The observed EIS profile evolution of Ni-Au electrodes over 7 days were very close to those of Au electrodes and differently from Ni ones. Finally, the morphology, viability and neuronal differentiation of rat embryonic cortical cells cultured on Ni-Au NW electrodes were found to be similar to those on control (glass) substrates and Au NW electrodes, accompanied by a lower glial cell differentiation. This positive in-vitro neural cell behavior encourages further investigation to explore the tissue responses that the implantation of these nanostructured electrodes might elicit in healthy (damaged) neural tissues in vivo, with special emphasis on eventual tissue encapsulation.
Mesh-Begriff(e) Rats ; Animals ; Electrodes ; Microelectrodes ; Nanostructures ; Neurons/physiology ; Nanowires ; Electric Impedance
Sprache Englisch
Erscheinungsdatum 2024-02-14
Erscheinungsland England
Dokumenttyp Journal Article
ZDB-ID 2615211-3
ISSN 2045-2322 ; 2045-2322
ISSN (online) 2045-2322
ISSN 2045-2322
DOI 10.1038/s41598-024-53719-4
Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

Zusatzmaterialien

Kategorien

Zum Seitenanfang