LIVIVO - Das Suchportal für Lebenswissenschaften

switch to English language
Erweiterte Suche

Suchergebnis

Treffer 1 - 3 von insgesamt 3

Suchoptionen

  1. Artikel ; Online: Generation of mouse hippocampal brain organoids from primary embryonic neural stem cells.

    Ciarpella, Francesca / Zamfir, Raluca Georgiana / Campanelli, Alessandra / Pedrotti, Giulia / Di Chio, Marzia / Bottani, Emanuela / Decimo, Ilaria

    STAR protocols

    2023  Band 4, Heft 3, Seite(n) 102413

    Abstract: Here we present a protocol to generate standardized cerebral organoids with hippocampal regional specification using morphogen WNT3a. We describe steps for isolating mouse embryonic (E14.5) neural stem cells from the brain subgranular zone, preparing ... ...

    Abstract Here we present a protocol to generate standardized cerebral organoids with hippocampal regional specification using morphogen WNT3a. We describe steps for isolating mouse embryonic (E14.5) neural stem cells from the brain subgranular zone, preparing organoids samples for immunofluorescence, calcium imaging, and metabolic profiling. This protocol can be used to generate mouse brain organoids for developmental studies, modeling disease, and drug screening. Organoids can be obtained in one month, thus providing a rapid tool for high-throughput data validation. For complete details on the use and execution of this protocol, please refer to Ciarpella et al. "Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity".
    Mesh-Begriff(e) Animals ; Mice ; Neural Stem Cells ; Neurons ; Hippocampus ; Brain ; Organoids
    Sprache Englisch
    Erscheinungsdatum 2023-07-15
    Erscheinungsland United States
    Dokumenttyp Journal Article
    ISSN 2666-1667
    ISSN (online) 2666-1667
    DOI 10.1016/j.xpro.2023.102413
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  2. Artikel ; Online: Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity.

    Ciarpella, Francesca / Zamfir, Raluca Georgiana / Campanelli, Alessandra / Ren, Elisa / Pedrotti, Giulia / Bottani, Emanuela / Borioli, Andrea / Caron, Davide / Di Chio, Marzia / Dolci, Sissi / Ahtiainen, Annika / Malpeli, Giorgio / Malerba, Giovanni / Bardoni, Rita / Fumagalli, Guido / Hyttinen, Jari / Bifari, Francesco / Palazzolo, Gemma / Panuccio, Gabriella /
    Curia, Giulia / Decimo, Ilaria

    iScience

    2021  Band 24, Heft 12, Seite(n) 103438

    Abstract: Brain organoids ... ...

    Abstract Brain organoids are
    Sprache Englisch
    Erscheinungsdatum 2021-11-15
    Erscheinungsland United States
    Dokumenttyp Journal Article
    ISSN 2589-0042
    ISSN (online) 2589-0042
    DOI 10.1016/j.isci.2021.103438
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

  3. Artikel ; Online: Complete neural stem cell (NSC) neuronal differentiation requires a branched chain amino acids-induced persistent metabolic shift towards energy metabolism.

    Bifari, Francesco / Dolci, Sissi / Bottani, Emanuela / Pino, Annachiara / Di Chio, Marzia / Zorzin, Stefania / Ragni, Maurizio / Zamfir, Raluca Georgiana / Brunetti, Dario / Bardelli, Donatella / Delfino, Pietro / Cattaneo, Maria Grazia / Bordo, Roberta / Tedesco, Laura / Rossi, Fabio / Bossolasco, Patrizia / Corbo, Vincenzo / Fumagalli, Guido / Nisoli, Enzo /
    Valerio, Alessandra / Decimo, Ilaria

    Pharmacological research

    2020  Band 158, Seite(n) 104863

    Abstract: Neural stem cell (NSC) neuronal differentiation requires a metabolic shift towards oxidative phosphorylation. We now show that a branched-chain amino acids-driven, persistent metabolic shift toward energy metabolism is required for full neuronal ... ...

    Abstract Neural stem cell (NSC) neuronal differentiation requires a metabolic shift towards oxidative phosphorylation. We now show that a branched-chain amino acids-driven, persistent metabolic shift toward energy metabolism is required for full neuronal maturation. We increased energy metabolism of differentiating neurons derived both from murine NSCs and human induced pluripotent stem cells (iPSCs) by supplementing the cell culture medium with a mixture composed of branched-chain amino acids, essential amino acids, TCA cycle precursors and co-factors. We found that treated differentiating neuronal cells with enhanced energy metabolism increased: i) total dendritic length; ii) the mean number of branches and iii) the number and maturation of the dendritic spines. Furthermore, neuronal spines in treated neurons appeared more stable with stubby and mushroom phenotype and with increased expression of molecules involved in synapse formation. Treated neurons modified their mitochondrial dynamics increasing the mitochondrial fusion and, consistently with the increase of cellular ATP content, they activated cellular mTORC1 dependent p70S6 K1 anabolism. Global transcriptomic analysis further revealed that treated neurons induce Nrf2 mediated gene expression. This was correlated with a functional increase in the Reactive Oxygen Species (ROS) scavenging mechanisms. In conclusion, persistent branched-chain amino acids-driven metabolic shift toward energy metabolism enhanced neuronal differentiation and antioxidant defences. These findings offer new opportunities to pharmacologically modulate NSC neuronal differentiation and to develop effective strategies for treating neurodegenerative diseases.
    Mesh-Begriff(e) Adenosine Triphosphate/metabolism ; Amino Acids, Branched-Chain/pharmacology ; Animals ; Cell Differentiation/drug effects ; Cell Differentiation/physiology ; Cell Proliferation/drug effects ; Dendritic Spines/drug effects ; Dendritic Spines/ultrastructure ; Energy Metabolism/drug effects ; Humans ; Induced Pluripotent Stem Cells/drug effects ; Mechanistic Target of Rapamycin Complex 1/metabolism ; Mice ; Mitochondria/drug effects ; Mitochondria/ultrastructure ; Neural Stem Cells/drug effects ; Neural Stem Cells/metabolism ; Neural Stem Cells/physiology ; Neurogenesis/drug effects ; Reactive Oxygen Species/metabolism ; Synapses/genetics ; Synapses/physiology ; Synapses/ultrastructure ; Transcriptome
    Chemische Substanzen Amino Acids, Branched-Chain ; Reactive Oxygen Species ; Adenosine Triphosphate (8L70Q75FXE) ; Mechanistic Target of Rapamycin Complex 1 (EC 2.7.11.1)
    Sprache Englisch
    Erscheinungsdatum 2020-05-12
    Erscheinungsland Netherlands
    Dokumenttyp Journal Article ; Research Support, Non-U.S. Gov't
    ZDB-ID 1003347-6
    ISSN 1096-1186 ; 0031-6989 ; 1043-6618
    ISSN (online) 1096-1186
    ISSN 0031-6989 ; 1043-6618
    DOI 10.1016/j.phrs.2020.104863
    Datenquelle MEDical Literature Analysis and Retrieval System OnLINE

    Zusatzmaterialien

    Kategorien

Zum Seitenanfang